
A robot hand-over control scheme for human-like haptic interaction

Efi Psomopoulou and Zoe Doulgeri,
Department of Electrical and Computer Engineering,

Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

e-mail: efipsom@ee.auth.gr , doulgeri@eng.auth.gr

Abstract— A robot hand-over control scheme is proposed
achieving human-like haptic interaction during object load
transfer from a giver to a receiver hand for the planar case. It
is assumed that the object has parallel surfaces and unknown
mass. The giver initiates the hand-over process while the
receiver estimates the transferred object mass adapting its
grip force accordingly in a three stage process. The control
laws are based on a dynamically stable grasp controller which
is modified for the hand-over task. A stable load transfer is
securely achieved as shown by the theoretical analysis and
illustrated by the simulation results.

I. INTRODUCTION

Accomplishment of a natural handing-over task between
a human and a robot is at the centre of research interest
as robots able to work alongside humans assisting and col-
laborating with them are becoming increasingly important.
Human to human hand-over studies have been conducted
in order to reveal a set of key features that can be utilized
in robot controllers. In general, humans both as givers and
receivers employ a similar strategy for controlling their grip
forces in response to changes in load forces during object
transfer. It was shown that over the course of the object
transfer, as time increased, the grip and load forces decreased
linearly for the giver and increased linearly for the receiver
except a slightly lower rate near the beginning for the receiver
and a much higher rate prior to the end for the giver [1]–
[3]. In this way, the giver applies a positive grip even after
the load force has reached approximately zero possibly for
ensuring safe object transfer while the receiver’s role is
simply to achieve an efficient load transfer by increasing
grip forces given load transfer estimates. The high sensitivity
of humans to temporal synchronization indicates the need
for the development of human-like robot hand-over control
strategies.

This work proposes a handing-over control algorithm
which enables robots to perform object hand-overs with
safety, efficiency, timing and interaction fluency like humans
do. The focus is on the haptic interaction of a giver and a
receiver hand. The analysis in confined in the 2D space under
the effect of gravity for an object with parallel surfaces but
can be extended to objects of unknown shape. A dynamic
stable grasp controller is used for each of the two fingered
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hands and is modified for the hand-over task. Equilibrium
and stability analysis is performed and simulation results are
given revealing the smooth human-like performance of the
proposed control scheme.

II. PRELIMINARIES
This section introduces the nomenclature and the defi-

nitions required for the analysis of the haptic interaction
between a giver and a receiver robotic hand. Fig. 1 illus-
trates the system considered at an instance of the hand-over
process. It is consisted of two dual fingered robotic hands
in contact with a rigid object of mass mo with parallel
surfaces and width l in the gravity field. Each hand consists
of two 3 degrees of freedom robotic fingers with revolute
joints and rigid hemispherical tips of radius r. Vector qi =[
qi1 qi2 qi3

]T
denotes the joint angles for the ith finger.

In the following, Rab denotes the rotation matrix of frame
{b} with reference to frame {a} unless the reference frame
is the inertia frame {P} in which case it is omitted. R(θ) is
a rotation through an angle θ about the z axis that is normal
to the x-y plane pointing outwards.
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Fig. 1: System of robotic fingers grasping a rigid object with
parallel surfaces

Let {P} be the inertia frame attached at the base of the
first finger and {O} be the object frame placed at its center
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Fig. 2: Finger tip and contact frames

of mass (Fig. 1) and described by the position vector po

∈ R2 and the rotation matrix Ro = R(θo).
Let {ti} be the ith fingertip frame described by position

vector pti ∈ R2 and rotation matrix Rti = R(φi), with

φi =

3∑
j=1

qij . Let frame {ci} be attached at the contact point

of each finger with the object with its x axis aligned with
the normal to the object surface pointing inwards and let
opoci

= [Xi Yi]
T be its position on the object frame. Let the

orientation of {ci} relative to {ti} be described by Rt1c1 =
R(φti) (Fig. 2). Frame {ci} is described by position vector
pci
∈ R2 and rotation matrix Rci = R(φi+φti). Let nci

, tci

∈ R2 be the normal pointing inwards and the tangential
vectors to the object at the contact points, expressed in {P},
hence Rci = [nci

tci
]. Notice that pci

= pti + rnci
.

We model the system under the following contact and
rolling constraints [4]:

[
Dii Di5

]  q̇i

ṗo

θ̇o

 = 0,
[
Aii Ai5

]  q̇i

ṗo

θ̇o

 = 0 (1)

where

Dii = nci

TJvi , Di5 =
[
−nci

T nci
T p̂oci

]
(2)

Aii = tci

TJvi + riJωi
, Ai5 =

[
−tci

T tci

T p̂oci
]

(3)

with poci
= pci

− po and for a vector p = [a b]T we
define p̂ = [b − a]T so that p̂Tk ∀k ∈ R2 defines the outer
product p×k. The Jacobian matrices Jvi = Jvi(qi) ∈ R2×3,
Jωi

= Jωi
(qi) ∈ R1×3 relate the joint velocity q̇i ∈ R3 with

the ith fingertip linear and rotational velocities ṗti ∈R2 and
ωti = φ̇i ∈ R respectively as follows:

ṗti = Jvi q̇i , ωti = Jωi
q̇i (4)

The first equation in (1) is the contact constraint implying
that the fingertip cannot penetrate or leave the object’s
surface. The second equation in (1) is the rolling constraint
denoting that the velocity of the contact point on the fingertip
surface is equal to the velocity of the contact point on the
object surface.

The system dynamics under the contact and rolling con-
straints (1) on the vertical plane is described by the following

equations for both fingers and the object:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) +Dii
T fi +Aii

Tλi = ui

(5)

M

[
p̈o

θ̈o

]
+

4∑
i=1

(
Di5

T fi +Ai5
Tλi
)

=

 0
−mog

0

 (6)

where Mi(qi) ∈ R3×3,M = diag (Mo, Io), with Mo =
diag (mo,mo) the positive definite inertia matrices of the
ith finger and object respectively and mo, Io denote the
object’s mass and moment of inertia and Ci(qi, q̇i)q̇i ∈
R3 the vector of Coriolis and centripetal forces of the ith
finger. Furthermore, gi(qi) ∈ R3 is the gravity vector, g the
gravity acceleration and the Lagrange multipliers fi and λi
represent the applied normal and tangential constraint forces
respectively at the contacts. Last, ui ∈ R3 is the vector of
applied joint torques to the ith finger.

Remark: A rolling constrained model implies that, in
practice, contact friction is sufficient to sustain the tangential
forces needed for the rolling motion.

A controller achieving stable grasp of the object without
utilizing any information on exact contact locations, contact
forces and object weight has been proposed in [4] and is
given by:

ui = gi(qi)− kvi q̇i + (−1)i+1 fd
2r
Jvi

T (pt2 − pt1)

− Jωi

T rN̂i +
m̂og

2
Jvi

T

[
0
1

]
(7)

where

N̂i(t) =
r

γi
(φi(t)− φi(0)), (8)

m̂o(t) = m̂o(0)− g

2γM

(
pt1 + pt2

)T [0
1

]
, (9)

are the estimations of the tangential forces and object mass
respectively with kvi , γi, γM being positive constant gains,
m̂o(0) is an initial guess of the object mass mo and fd is a
positive constant reflecting the desired grasping force. Notice
that this control law applies forces at the direction of the line
connecting the fingertips (third term) and compensates for
the unknown rotational moments developed at the fingertips
and the object with the last two terms. After establishing
an initial contact with the object, this controller achieves a
stable grasp equilibrium by fingertip rolling. For a redundant
system (like the two 3 dof fingers) mass estimates converge
to the real object mass m̂o∞ = mo [4]. Hereafter, the “∞”
in the subscript denotes equilibrium values. At equilibrium
the torque balance is achieved at positions satisfying the
following equation:

fd
(
Y1∞ − Y2∞

)
+
mog sin θo∞

2

(
Y1∞ + Y2∞

)
= 0 (10)

which implies finger opposability (Y1∞ = Y2∞) only when
the object is eventually upright (θo∞ = 0) or the contact
points are at each side of the center of mass (Y1∞ = Y2∞ =



0). At equilibrium, each contact force compensates for half
the object weight and contributes to the grasping force

fi∞=(−1)i+1 fd
2r

nci
T
(
pt2 − pt1

)
+
mog

2
nci

T

[
0
1

]
, i = 1, 2

λi∞=(−1)i+1 fd
2r

tci
T
(
pt2 − pt1

)
+
mog

2
tci

T

[
0
1

]
, i = 1, 2

while tangential force estimates converge to equilibrium
values N̂i∞ = −λi∞. Furthermore, tangential forces at
equilibrium satisfy the following equations N̂1∞ + N̂2∞ =
fd
2r

(
Y1∞ − Y2∞

)
and N̂2∞ − N̂1∞ = mog cos θo∞.

In this work, we modify this controller for a giver and
a receiver hand embedding human-like features during a
hand-over task for an unknown mass object. The hand-over
strategy is described in the following section.

III. HAND-OVER STRATEGY

The hand-over task is analysed into three stages.
Stage 1: The giver (fingers i = 1, 2) stably grasps the

object using controller (7) given a pre-set constant fd. At
equilibrium, estimates of the mass in (9) converge to the
actual object mass as mentioned above.

Stage 2: The receiver (fingers i = 3, 4) controlled by (7)
for i = 3, 4, comes into an initial contact with the object at
t0 and applies a desired constant force fd = finit. Clearly, in
(7) and (9), pt1 , pt2 are replaced by pt3 , pt4 respectively.
The resulting transient on the giver hand may be sensed by
force or tactile sensing signalling the possibility for the object
load transfer. In general, multi-modal sensorial data (vision,
tactile sensing) may be used to monitor Stage 2.

Stage 3: The giver initiates the object load transfer, at
tstart > t0 and for a pre-set ∆t sec duration, utilizing the
following human-like pre-set time functions [3] in place of
the object mass estimate (m̂o) and desired grasping force
(fd) in (7).

mg(t)=

(mo −mgf )

(
1− t− tstart

∆t

)
+mgf , t < tf

mgf , t > tf
(11)

fdg(t)=

(fd − fdgf )

(
1− t− tstart

∆t

)
+fdgf , t < tf

fdgf , t > tf

(12)

where mgf , fdgf are the object mass and the desired grasping
force of the giver at the end of the object load transfer at
tf = tstart + ∆t. Equations (11), (12) linearly decrease the
load and grip forces. In a human-like strategy, mgf = 0 and
fdgf 6= 0 in order to ensure a safe object transfer. In that case,
total object release (i.e. setting fdg = 0) is signaled by the
micro-sliding that is induced when the receiver hand/object
withdraws.

The receiver estimates the transferred object mass m̂o via
(9) and during this stage increases or adapts its grip force
fdr(t) which is utilized in place of fd in (6). One could use a
constant grasping force for the receiver fdr(t) = finit in all
stages. This, however, is not an efficient control strategy and

in practice may lead to the object slipping from the receiver
hand if the grasping force is not adequate to keep the contact
forces inside the friction cone. The following law is proposed
instead:

fdr(t) = finit + εm̂o(t) (13)

where ε is a positive control constant, that should ideally be
chosen or adapted to the frictional properties of the contact.

Notice that the giver’s controller switches desired values
depending on the hand-over stage and can therefore be
considered as the initiator of the hand-over process while
the receiver’s controller does not involve any changes. The
underlying assumption is that the receiver is a fully trusted
and responsive agent.

A. System Equilibrium

Substituting the modified control law (7)-(9) with (11) -
(13) into (5), (6) utilizing (2), (3), the closed loop system
can be written in terms of the force and object mass errors
as follows:

Miq̈i+Cfi q̇i+Dii
T ∆fi+Aii

T ∆λi+rJωi

T ∆Ni , j = 1, 2

+ (j − 1)∆M
g

2
Jvi

T

[
0
1

]
=0 (14)

Mop̈o−
4∑

i=1

(nci
∆fi+tci

∆λi)=0 (15)

Ioθ̈o+

4∑
i=1

p̂Toci(nci
∆fi+tci

∆λi)+SN =0 (16)

where Cfi = (Ci + kviI3) with I3 being the identity matrix
of dimension 3, j = 1 for the giver, j = 2 for the receiver
and defining the released object mass by mr = m0 −mg(t)
as well as denoting

mj =

{
mg , j = 1
mr , j = 2

(17)

the rest of the terms are given by the following equations

∆fi = fi−(−1)i+1nci
TFj−

mjg

2
nci

T

[
0
1

]
(18)

∆λi = λi−(−1)i+1tci
TFj−

mjg

2
tci

T

[
0
1

]
(19)

∆Ni = N̂i+(−1)i+1tci
TFj+

mjg

2
tci

T

[
0
1

]
(20)

∆M = mr − m̂o (21)

SN =
fdg
2r

(
p̂Toc1 − p̂

T
oc2

)(
pt2 − pt1

)
+
mgg

2

(
p̂Toc1 + p̂Toc2

) [0
1

]
+
fdr
2r

(
p̂Toc3 − p̂

T
oc4

)(
pt4 − pt3

)
+
mrg

2

(
p̂Toc3 + p̂Toc4

) [0
1

]
(22)



with

Fj =


fdg
2r

(
pt2 − pt1

)
, j = 1

fdr
2r

(
pt4 − pt3

)
, j = 2

(23)

In order to find the equilibrium state of the system in
the end of the hand-over process, we set velocities and
accelerations to zero in (14):

DT
ii∆fi+A

T
ii∆λi+J

T
ωi
r∆Ni+(j − 1)∆M

g

2
Jvi

T

[
0
1

]
=0

which using (2), (3) can be written as:

[
JT
vi JT

ωi

] nci∆fi + tci∆λi + (j − 1)∆M g
2

[
0
1

]
r(∆λi + ∆Ni)

 = 0

Assuming a full rank Jacobian matrix Ji =
[
JT
vi JT

ωi

]
, we

obtain

nci∆fi + tci∆λi + (j − 1)∆M
g

2

[
0
1

]
= 0 (24)

∆λi + ∆Ni = 0 (25)

Adding equations (24) for all i and j and substituting the
object’s translational motion equation (15) at equilibrium
(p̈o = 0) yields

∆M = 0 (26)

and nci∆fi + tci∆λi = 0 that owing to the independent
directions leads to:

∆fi = ∆λi = 0 (27)

Consequently, (25) yields

∆Ni = 0 (28)

Given (27), the object’s rotational motion equation (16) at
equilibrium (θ̈o = 0) yields a zero rotational torque acting
at the object

SN = 0 (29)

From (26) - (28), it is clear that all force and object mass
errors are zero at equilibrium. Specifically, (26) implies that,
at equilibrium, the receiver estimates correctly the released
mass of the object while from (28) we conclude that both
giver and receiver estimate the actual tangential forces at the
fingertips.

Expressing (29) in the object frame, utilizing (22) and
the contact constraints, the torque balance achieved yields
the following equation regarding contact positions at equi-
librium:

fdgf
(
Y1∞ − Y2∞

)
+ fdr∞

(
Y3∞ − Y4∞

)
+
g sin θo∞

2

[
mgf

(
Y1∞ + Y2∞

)
+mr∞

(
Y3∞ + Y4∞

)]
= 0

(30)

where mr∞ = mo − mgf and fdr∞ = finit or fdr∞ =
finit + εmr∞ if (13) is used for the receiver’s grip force

fdr(t) adaptation. Notice the similarities between this rela-
tionship and (10) which holds for one hand grasp.

Furthermore, adding equations (28) for i = 1, 2 and
i = 3, 4, expressing the result in the object frame, utilizing
the contact constraints and assuming that total release of the
object mass is desired (mgf = 0, mr∞ = mo) yields:

N̂1∞ = N̂2∞ (31)

2N̂1∞ =
fdgf
r

(
Y1∞ − Y2∞

)
(32)

N̂3∞ + N̂4∞ =
finit + εmo

r

(
Y3∞ − Y4∞

)
(33)

N̂4∞ − N̂3∞ = mog cos θo (34)

while (30) becomes

fdgf
(
Y1∞ − Y2∞

)
+ (finit + εmo)

(
Y3∞ − Y4∞

)
+
g sin θo∞

2
mo

(
Y3∞ + Y4∞

)
= 0 (35)

Notice that in the end of the hand-over process, the receiver’s
tangential forces at equilibrium (33), (34) correspond to those
achieved for the one-hand case (as described at the end of
Section II) while the giver’s tangential forces at equilibrium
correspond to a gravity-free grasp.

B. Stability Analysis

To facilitate the analysis, we assume fdr(t) = finit and
rewrite the closed loop system equation (5), (7) - (13) in the
following compact form collecting all Lagrange multipliers
in the vector λ = [f1 f2 f3 f4 λ1 λ2 λ3 λ4]T and all system
position variables in x = [q1

T q2
T q3

T q4
T po

T θo]T .

Msẍ + Csẋ +Kvẋ +Aλ−


fdg
2r Jv1

T (pt2 − pt1)

− fdg
2r Jv2

T (pt2 − pt1)
fdr
2r Jv3

T (pt4 − pt3)

− fdr
2r Jv4

T (pt4 − pt3)
03×1



+ r


N̂1J

T
ω1

N̂2J
T
ω2

N̂3J
T
ω3

N̂4J
T
ω4

03×1

+



−mgg
2 Jv1

T

−mgg
2 Jv2

T

− m̂og
2 Jv3

T

− m̂og
2 Jv4

T

0
mog

0


= 0 (36)

with

Ms = diag (M1,M2,M3,M4,M)

Cs = diag (C1, C2, C3, C4, 03×3)

Kv = diag (kv1I3, kv2I3, kv3I3, kv4I3, 03×3)

A =

[
D B
Do Bo

]
where D = diag

(
DT

ii

)
, B = diag

(
AT

ii

)
, i = 1, . . . , 4,

Do =
[
DT

15 DT
25 DT

35 DT
45 DT

55

]
Bo =

[
AT

15 AT
25 AT

35 AT
45 AT

55

]



Similarly, the constraints can be written compactly as:
AT ẋ = 0.

Multiplying (36) by ẋT from the left yields:
dV

dt
+W = 0

where:

V =
1

2

(
ẋTMsẋ +

4∑
i=1

γiN̂
2
i + γM∆M2

r

+
fdg
2r
‖pt1 − pt2‖2 + +

fdr
2r
‖pt3 − pt4‖2

)
+mog∆y +

∆Mgg

2
(pt1 + pt2)T

[
0
1

]
(37)

with ∆Mg = mo −mg , ∆Mr = mo − m̂o,

∆y = po
T

[
0
1

]
− 1

2
(pt1 + pt2 + pt3 + pt4)T

[
0
1

]
and

W = kv1‖q̇1‖2 + kv2‖q̇2‖2 + kv3‖q̇3‖2 + kv4‖q̇4‖2

− ḟdg
4r
‖pt1 − pt2‖2 +

ṁgg

2
(pt1 + pt2)T

[
0
1

]
(38)

Similarly to [4], it is possible to prove that by appropriately
choosing the control gains, (37) is locally positive definite
in the constraint manifold defined by Mc(x) = {x ∈ R15 :
AT ẋ = 0}.

Considering |ḟdg| ≤ b1 and |ṁg| ≤ b2 for b1, b2 > 0, W
can be bounded as follows: W ≥ kv1‖q̇1‖2 + kv2‖q̇2‖2 +
kv3‖q̇3‖2 + kv4‖q̇4‖2 − b1 − b2. Given that at the end of
the hand-over process ḟdg = ṁg = 0, it is clear that V̇ =
−W ≤ 0 and consequently V (t) ≤ V (0) holds. The stability
analysis follows a similar reasoning as in [4] to conclude that
x, ẋ, ẍ are bounded and converge to zero.

IV. SIMULATION RESULTS

We consider two dual finger hands with identical robotic
fingers, as depicted in Fig. 1, where r = 0.01 m and their
parameters given in Table I. The receiver hand is placed at
height h = 0.14 m above the giver hand while the fingers
of each hand are positioned at distance d = 0.02 m and are
initially at rest. We consider an object with parallel surfaces
of width l = 0.02 m and height 1.8 ∗ l m with mass mo =
0.08 Kg and Io = 4×10−4. The hand-over timing parameters
are given by t0 = 5.5 sec, tstart = 6 sec and ∆t = 0.5 sec.
The system position at time t0 is given in Table II. Giver
and receiver control constants are kvi = 0.001, γi = 0.001
for i = 1, . . . 4, γM = 0.1, m̂o(t0) = 0.02 kg, finit = 0.5
N, mgf = 0 kg, fdgf = 0.1 N and ε = 45 as the proposed
adaptation law (13) is used in the simulations. An initial
grasp by the giver utilizing fd = 4 and m̂o(0) = 0.02 kg
precedes the hand-over process.

Simulation results depict system response in Fig. 3 - Fig.
10 including all stages of the hand-over process except the
initial giver’s grasp transients. Giver responses in Fig. 3 - Fig.
6 are depicted with dashed lines. Object load transfer (stage
3) occurs from t = 6 sec to t = 6.5 sec following stage
2. Notice the receiver’s contact force and relative contact
position transients at stage 2 (5.5− 6 sec) in Fig. 3 and Fig.

4 respectively and the disturbance they induce to the giver’s
respective values which in turn stabilize at new values at
the end of stage 2 as imposed by the equilibrium of the
overall system. This is also evident by the change in the
object’s orientation (Fig. (7)). Also notice how during stage
3 the estimated mass of the receiver (m̂o) follows closely
the released object mass (mr) until the whole actual object
mass at the end of the process (Fig. 5). When the object load
transfer is over the system converges to a final equilibrium
position (Fig. 4) corresponding to an almost inverse state
from the one at the beginning of the object load transfer (Fig.
3 and 5); evidently, the different relative contact position at
the final equilibrium (Fig. 4) means that contact forces are
not exactly reversed. Force angles (Fig. 6) stay less than 6
degrees during all stages for both hands indicating that the
object is securely delivered from the giver to the receiver
hand avoiding slipping even under a narrow friction cone.
Joint and object velocities converge to zero at the end of
stage 2 and 3 indicating the new attained equilibriums (Fig.
8, 9); force and mass estimation errors depicted in Fig. 10 are
also converging to zero at the end of each stage confirming
theoretical findings.

Links 1 2 3
Masses (Kg) 0.045 0.03 0.015
Lengths (m) 0.04 0.03 0.02

Inertias (Kg m2)
Iz (×10�6) 6 4 2

TABLE I: Robotic fingers parameters

Joints qi1[deg] qi2[deg] qi3[deg]

i = 1 150.725 -92.1141 -30.7137
i = 2 25.1163 66.9701 55.2918
i = 3 -131.626 53.7521 47.8739
i = 4 -35.8743 -52.597 -56.5287
Object xo[m] yo[m] θo[deg]

0.0177 0.0635 0.0834

TABLE II: Initial system pose
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Fig. 3: Contact force responses
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V. CONCLUSIONS
A stable hand-over control scheme is proposed for two

dual-fingered hands with semi-spherical fingertips under

5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

−5

0

5

10

x 10
−3

ṗ
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Fig. 9: Object translational and angular velocities
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Fig. 10: Force and mass estimation error responses. (a)
Normal force error ∆fi. (b) Tangential force error ∆λi. (c)
∆Ni (d) Mass estimation error ∆M

contact and rolling constraints for the planar case. The
control laws accomplish a natural object load transfer without
utilizing any knowledge for the object mass and the contact
locations. They are based on a controller achieving actual
object mass estimate which is suitably modified. Grasp
stability is achieved at each of the three stages of the hand-
over process ensuring a secure object transfer. Simulation
results illustrate the transients and achieved equilibriums at
each stage.
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